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Abstract

The equations of elastic dielectrics with electric field gradient effects are specialized to the case of anti-plane motions

of polarized ceramics. A general solution is obtained in polar coordinates. Analytical solutions to the static problems of

the potential field of a line source, the capacitance of a circular cylindrical ceramic shell, and the dynamic problem of

the dispersion relation of plane waves are obtained to examine the electric field gradient effect. Special attention is paid

to the case when the shell is thin and the waves are short.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For elastic dielectrics there are two formulations. One uses the electric polarization vector as the
independent electric constitutive variable (Toupin, 1956). The other uses the electric field vector (Tiersten,

1971). Mindlin (1968) extended the polarization formulation by allowing the stored energy density to

depend on the polarization gradient, in addition to the polarization vector and the strain tensor. Mindlin’s

theory has received a lot of attention, e.g., Askar et al. (1970); Chowdhury and Glockner (1976, 1977);

Chowdhury et al. (1979); Schwartz (1969), and Collet (1982). As is well known, gradient theories can

describe size effects which are important in small scale problems. They also have important consequences in

problems with singularities like concentrated sources or defects. Gradient theories are closer to microscopic

theories like lattice dynamics than classical continuum theories (Mindlin, 1969). They are still applicable
when the characteristic length of a problem is so small that classical continuum theories begin to fail. One

of the successful applications of Mindlin’s polarization gradient theory is the capacitance of a thin dielectric

film (Mindlin, 1969) where a size effect was observed in experiments and the classical theory of dielectrics
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cannot describe it. The development of new technology results in thinner and thinner dielectric films and

other small electronic devices. The study of these small devices presents new problems that old theories

cannot describe, and the gradient effects of electric variables often play an important role in these problems.

For dielectrics it is known that the electric field gradient can also be used as constitutive variables (Landau
and Lifshitz, 1984). The resulting theory is called dielectrics with spatial dispersion, and is equivalent to the

theory of dielectrics with electric quadrupoles (Kafadar, 1971) because electric quadrupole is the thermo-

dynamic conjugate of the electric field gradient. Theories for elastic dielectrics with electric quadrupoles

were also developed (Demiray and Eringen, 1973; Maugin, 1979, 1980; Eringen and Maugin, 1990), which

provide results similar to Mindlin’s polarization gradient theory in problems with singularities or scale

effects. Various gradient theories can be considered as theories for weak nonlocal effects (Maugin, 1979).

In this paper we study the effect of electric field gradient in anti-plane problems of polarized ceramics.

The three-dimensional equations for elastic dielectrics with electric field gradient are summarized in Section
2. Equations for the two-dimensional anti-plane case are given in Section 3. A general solution in polar

coordinates is obtained in Section 4. Static problems of the potential field of a line source and the

capacitance of a circular cylindrical ceramic shell are analyzed in Sections 5 and 6, respectively. Section 7 is

on the dynamic problem of propagation and dispersion of plane waves. Finally, some conclusions are

drawn in Section 8.
2. Elastic dielectrics with electric field gradient

We summarize the theory of elastic dielectrics with electric field gradient below. Consider the following

functional over a volume V bounded by a closed surface S with unit exterior normal n (Yang, 1997a)
Cðui;/Þ ¼
Z
V
W ðSij;Ei;Ei;jÞ

�
� 1

2
e0EiEi � fiui þ q/

�
dV �

Z
S

�tiui

�
þ �d/ þ �p

o/
on

�
dS; ð1Þ
where ui is the mechanical displacement vector, / the electric potential, Sij the strain tensor, e0 the electric
permittivity of free space, Ei the electric field vector, fi the body force, q the body free charge density, and �ti
the surface traction vector. �d is related to surface free charge. �p is physically more subtle and mathemat-

ically its presence is variationally consistent. Summation convention for repeated tensor indices and the
convention that a comma followed by an index denotes partial differentiation with respect to the coordinate

associated with the index are used. In Eq. (1)
W ðSij;Ei;Ei;jÞ ¼ HðSij;EiÞ � e0cijkEiEj;k �
1

2
e0aijklEi;jEk;l; ð2Þ
where H is the usual electric enthalpy function of piezoelectric materials. For linear materials H can be

written in the following quadratic form (Tiersten, 1969)
HðSij;EiÞ ¼
1

2
cijklSijSkl �

1

2
e0vijEiEj � eiklEiSkl; ð3Þ
where cijkl are the elastic constants, eijk the piezoelectric constants, and vij the electric susceptibility tensor.

cijk and aijkl are new material constants due to the introduction of the electric field gradient in the energy

density function. cijk has the dimension of length. aijkl has the dimension of (length)2. Physically they may be

related to characteristic lengths of atomic or microstructural interactions of the material. Since Ei;j ¼ Ej;i,
aijkl has the same structure as cijkl as required by crystal symmetry, and cijk has the same structure as eijk.
For W to be negative definite in the case of pure electric phenomena without mechanical fields, we require
aijkl to be positive definite like vij.
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With the following constraints
Sij ¼ ðui;j þ uj;iÞ=2; Ei ¼ �/;i; ð4Þ
from the variational functional in Eq. (1), for independent variations of ui and / in V , we have
Tji;j þ fi ¼ 0;

Di;i ¼ q;
ð5Þ
where we have denoted
Tij ¼
oW
oSij

¼ cijklSkl � ekijEk;

Di ¼ e0Ei þ Pi ¼ eijEj þ eiklSkl � e0ðckij � cijkÞEj;k � e0aijklEk;lj;

Pi ¼ Pi � Pij;j ¼ e0vijEj þ eiklSkl � e0ðckij � cijkÞEj;k � e0aijklEk;lj;

Pi ¼ � oW
oEi

¼ eiklSkl þ e0vijEj þ e0cijkEj;k;

Pij ¼ � oW
oEi;j

¼ e0ckijEk þ e0aijklEk;l:

ð6Þ
In Eq. (6) eij ¼ e0ðdijvijÞ. Pi and Pij are related to electric dipole and quadrupole densities (Eringen and

Maugin, 1990). The functional in Eq. (1) also implies the following as possible forms of boundary con-

ditions on S:
Tjinj ¼ �ti or dui ¼ 0;Z
S
½ðDini � �dÞd/ þ Pijnjðrsd/Þi�dS ¼ 0;

Pijnjni ¼ �p or d
o/
on

� �
¼ 0;

ð7Þ
where rs is the surface gradient operator. One obvious possibility of Eq. (7)2 is d/ ¼ 0 on S. Other pos-

sibilities will be dealt with in specific problems. With substitutions from Eq. (6), Eq. (5) can be written as

four equations for ui and /
cijkluk;lj þ ekij/;kj þ fi ¼ q€ui;

eikluk;li � eij/;ij þ e0aijkl/;ijkl ¼ q;
ð8Þ
where q is mass density. A superimposed dot represents a time derivative. In Eq. (8), to include dynamic

problems, we have added the acceleration term. When a ! 0 Eqs. (8) reduce to the classical theory of

piezoelectricity.
3. Anti-plane problems of polarized ceramics

For ceramics poled in the x3 direction the material tensors in Eq. (8) are the same as those of crystals of 6
mm symmetry and are represented by the following matrices under the compact matrix notation (Tiersten,

1969)
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c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

0
BBBBBB@

1
CCCCCCA
;

0 0 e31
0 0 e31
0 0 e33
0 e15 0

e15 0 0

0 0 0

0
BBBBBB@

1
CCCCCCA

T

;
e11 0 0

0 e11 0

0 0 e33

0
@

1
A; ð9Þ
where c66 ¼ ðc11 � c12Þ=2, and the superscript T is for matrix transpose. We consider anti-plane motions

with
u1 ¼ u2 ¼ 0; u3 ¼ uðx1; x2; tÞ;
/ ¼ /ðx1; x2; tÞ:

ð10Þ
The nonvanishing strain and electric field components are
S5
S4

� 

¼ ru; E1

E2

� 

¼ �r/; ð11Þ
where r is the two-dimensional gradient operator. The nontrivial components of Tij and Di are
T5
T4

� 

¼ cruþ er/;

D1

D2

� 

¼ eru� er/ þ e0arðr2/Þ;

D3 ¼ �e0ðc31 � c15Þr2/;

ð12Þ
where r2 is the two-dimensional Laplacian, c ¼ c44, e ¼ e15, e ¼ e11 and a ¼ a11. The nontrivial ones of Eq.

(8) take the following form
cr2uþ er2/ þ f ¼ q€u;

er2u� er2/ þ e0ar2r2/ ¼ q;
ð13Þ
where f ¼ f3 Eq. (13) can be partially decoupled into the following one-way coupled system:
�cr2uþ f þ e0
e

ar2ðq€u� cr2u� f Þ ¼ q€uþ e
e
q;

r2/ ¼ 1

e
ðq€u� cr2u� f Þ:

ð14Þ
For static problems Eq. (13) can also be decoupled into
� �er2/ þ e0ar2r2/ ¼ qþ e
c
f ;

r2u ¼ � 1

c
ðer2/ þ f Þ:

ð15Þ
In Eqs. (14) and (15)
�c ¼ cð1þ k2Þ;�e ¼ eð1þ k2Þ; k2 ¼ e2=ðecÞ ð16Þ
where k is a dimensionless number (the electromechanical coupling factor).
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4. A general solution in polar coordinates

We consider static problems with q ¼ 0 and f ¼ 0. Let
F ¼ r2/; b2 ¼ �e=e0a: ð17Þ

Eq. (15)1 becomes
r2F � b2F ¼ 0: ð18Þ

In a polar coordinate system defined by x1 ¼ r cos h and x2 ¼ r sin h, by separation of variables, the general

solution for F periodic in h can be found as
F ¼
X1
n¼0

ðan cos nh þ bn sin nhÞ½cnInðbrÞ þ dnKnðbrÞ�; ð19Þ
where an, bn, cn and dn are undetermined constants, and In and Kn are modified Bessel functions of order n of
the first- and second-kind. Then from Eq. (17)1 the general solution for / is
/ ¼ a0 g0

�
þ h0 ln r þ

c0
b2
I0ðbrÞ þ

d0
b2
K0ðbrÞ

�

þ
X1
n¼1

ðan cos nh þ bn sin nhÞ gnrn
�

þ hnr�n þ
cn
b2
InðbrÞ þ

dn
b2
KnðbrÞ

�
; ð20Þ
where gn and hn are undetermined constants. Once / is known, from Eq. (15)2 u is given by
u ¼ a0 l0

�
þ p0 ln r �

e
c
c0
b2
I0ðbrÞ �

e
c
d0
b2
K0ðbrÞ

�

þ
X1
n¼1

ðan cos nh þ bn sin nhÞ lnrn
�

þ pnr�n �
e
c
cn
b2
InðbrÞ �

e
c
dn
b2
KnðbrÞ

�
; ð21Þ
where ln and pn are undetermined constants.
5. Potential field of a line source

We now consider the potential field of a line charge Q at the origin. The above general solution is

applicable and it is also simple to integrate the equation directly. We need to solve Eq. (15)1 with a con-

centrated source term
��er2/ þ e0ar2r2/ ¼ Qdðx1; x2Þ: ð22Þ
Eq. (22) can be rewritten as
ð��e þ e0ar2Þr2/ ¼ Qdðx1; x2Þ: ð23Þ
Therefore r2/ is the fundamental solution of the differential operator in Eq. (23), which is known

(Zauderer, 1983). Hence
r2/ ¼ 1

r
d

dr
r
d/
dr

� �
¼ � Q

2pe0a
K0ðbrÞ: ð24Þ
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Since
xK0ðxÞ ¼ � d

dx
½xK1ðxÞ�; K1ðxÞ ¼ � d

dx
½K0ðxÞ�: ð25Þ
Integrating Eq. (24) twice we obtain
/ ¼ � Q
2p�e

½ln r þ K0ðbrÞ�; ð26Þ
where the ln r term is the classical solution. Since
K0ðxÞ ! � ln x; x ! 0;

K0ðxÞ !
p
2x

� �1=2

e�x; x ! 1;
ð27Þ
we have
/ ! Q
2p�e

ln b ¼ Q
4p�e

ln
�e

e0a
; r ! 0;

/ ! � Q
2p�e

ln r; r ! 1:

ð28Þ
Therefore for far field / approaches the classical solution. At the origin the exact value of / is not

important because an arbitrary constant in / is immaterial. The important thing is that at the source point

/ is not singular. This is fundamentally different from the classical solution. When a approaches zero,

b ! 1 from Eqs. (17) and (26) reduces to the classical result. The potential field is plotted in Fig. 1 to show
its qualitative behavior which is as expected. The curve with the smaller value of a or the larger value of b is

closer to the classical solution.
6. Capacitance of a circular cylindrical shell

Experiments show that the capacitance of a thin dielectric plate is smaller than the prediction of the
classical theory. This difference was explained by Mindlin using both lattice dynamics and his polarization

gradient theory (Mindlin, 1969). In this section we show that a similar phenomenon is predicted for a

circular cylindrical shell capacitor of polarized ceramics. Consider a circular cylindrical shell of inner radius
-2
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Fig. 1. Normalized potential field ð�2p�e/=QÞ of a line source.
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R1 and outer radius R2 (Fig. 2). The inner and outer surfaces are traction free and are electroded, with

electrodes shown by the thick lines in the figure. A voltage V is applied across the thickness. We list the

solution from the classical theory of piezoelectricity below for comparison
/ ¼ V
lnR2=R1

ln r; u ¼ � e
c

V
lnR2=R1

ln r; Trz ¼ 0; Dr ¼ ��e V
lnR2=R1

1

r
; C0 ¼

2p�e
lnR2=R1

; ð29Þ
where we have denoted v11 ¼ v, and introduced �v such that �e ¼ e0ð1þ �vÞ. �v is the effective electric sus-

ceptibility including the effect of piezoelectric coupling and is determined by ð1þ �vÞ ¼ ð1þ vÞð1þ k2Þ. C0 is

the capacitance per unit length of the shell.

We now seek the gradient solution. Since the problem is axi-symmetric, terms corresponding to n ¼ 0 in
the general solution are sufficient. From Eqs. (20) and (21) we have
/ ¼ g0 þ h0 ln r þ
c0
b2
I0ðbrÞ þ

d0
b2
K0ðbrÞ;

u ¼ l0 þ p0 ln r �
e
c
c0
b2
I0ðbrÞ �

e
c
d0
b2
K0ðbrÞ;

ð30Þ
where we have dropped a0 which is immaterial. Corresponding to Eq. (30) we have
Srz ¼ u;r ¼
p0
r
� e
cb
c0I1ðbrÞ þ

e
cb
d0K1ðbrÞ;

Er ¼ �/;r ¼ � h0
r
� 1

b
c0I1ðbrÞ þ

1

b
d0K1ðbrÞ;

Trz ¼ ðcp0 þ eh0Þ
1

r
;

Dr ¼ ðep0 � eh0Þ
1

r
:

ð31Þ
We note that the strain and electric fields differ from the classical theory by terms of modified Bessel

functions. For boundary conditions we have
Fig. 2. A circular cylindrical ceramic shell as a capacitor.
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TrzðR2Þ ¼ ðcp0 þ eh0Þ
1

R2

¼ 0;

/ðR2Þ � /ðR1Þ ¼ h0 lnR2=R1 þ
c0
b2

½I0ðbR2Þ � I0ðbR1Þ� þ
d0
b2

½K0ðbR2Þ � K0ðbR1Þ� ¼ V ;

�ErðR2Þ ¼
o/
on

����
R2

¼ h0
R2

þ 1

b
c0I1ðbR2Þ �

1

b
d0K1ðbR2Þ ¼ k

1

R2

V
lnR2=R1

;

�ErðR1Þ ¼
o/
on

����
R1

¼ h0
R1

þ 1

b
c0I1ðbR1Þ �

1

b
d0K1ðbR1Þ ¼ k

1

R1

V
lnR2=R1

: ð32Þ
Corresponding to Eq. (7)1;2, the first two boundary conditions on traction and voltage in Eq. (32)1;2 are
formally classical except the terms of the modified Bessel functions. The surface gradient term in Eq. (7)2
disappears due to the symmetry in this problem. Since the order of the equation in Eq. (15)1 is higher than

the Laplace equation in the classical theory, new boundary conditions are needed. According to Eq. (7)3,

the additional boundary conditions may be either on o/=on or Pijninj. Motivated by Mindlin (1969), what

we have in Eq. (32)3;4 is on o/=on, where, following (Mindlin, 1969), we have introduced a parameter k and

when k ¼ 1 the right hand sides of Eq. (32)3;4 represent the values of �ErðR2Þ and �ErðR1Þ of the classical
solution. Mindlin concluded based on physical reasoning (Mindlin, 1969) that the boundary normal values

of P in a plate capacitor from his polarization gradient theory should be smaller than the values from the
classical theory. Since we are using electric field gradient, Mindlin’s argument should translate into that the

boundary normal values of E be larger than the classical values. Therefore we require that k > 1. This is

also consistent with the results on the electric field from a nonlocal analysis of a thin plate capacitor (Yang,

1997b). According to (Mindlin, 1969), k depends on the physical nature of the electrode-dielectric interface.

We note that TrzðR1Þ ¼ 0 does not provide an independent boundary condition because Eq. (32)1 implies

that Trz ¼ 0 everywhere. Eq. (32) represents four equations for h0, p0, c0 and d0. They are solved on a

computer. The capacitance of the shell per unit length is determined by
C ¼ �2pR2DrðR2Þ=V ¼ �2pðep0 � eh0Þ=V : ð33Þ
Normalized capacitance C=C0 versus ðR2 � R1Þ=
ffiffiffi
a

p
is plotted in Fig. 3. It is seen that when ðR2 � R1Þ=

ffiffiffi
a

p
is

large the gradient and classical solutions agree, but when ðR2 � R1Þ=
ffiffiffi
a

p
is small the gradient solution is

smaller. This was observed experimentally for plate capacitors (Mindlin, 1969) and it is natural to expect

the same for a shell capacitor.

Electric field distribution along the shell thickness is shown in Fig. 4. Except near the surfaces of the
shell, the gradient and the classical solutions show the same electric field. Near the surfaces the gradient
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Fig. 3. Normalized capacitance versus shell thickness in a circular cylindrical shell ðR1 ¼ 10
ffiffiffi
a

p
Þ.
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solution predicts larger electric fields. This type of boundary behavior is typical for a gradient theory and is
also seen in the polarization gradient solution for a plate in (Mindlin, 1969), and the nonlocal solution in

(Yang, 1997b) where there are no additional boundary conditions and the parameter k is not needed.

The strain field distribution along the shell thickness is shown in Fig. 5, which is very similar to the

electric field. The localized electromechanical fields near the shell surfaces may have implications on the

strength of the shell.

Numerical results also show that
DGradient
r

DClassical
r

¼ 0:9925; ð34Þ
which supports our reasoning that a smaller P in the polarization gradient theory translates into a larger E

in the electric field gradient theory.
7. Propagation of plane waves

Consider the propagation of the following plane wave
u ¼ eiðnx1�xtÞ; ð35Þ

where n is wave number and x is frequency. Substitution of Eq. (35) into the homogeneous form of Eq.
(14)1 (f ¼ 0, q ¼ 0) yields the following dispersion relation
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Fig. 6. Dispersion curves of plane waves.
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x2 ¼ c
q

n2 1

"
þ k2

1þ e0
e an2

#
: ð36Þ
Different from the plane waves in linear piezoelectricity, Eq. (30) shows that the waves are dispersive, and

the dispersion is caused by electric field gradient through electromechanical coupling. The dispersion dis-

appears when k ¼ 0, i.e., when there is no electromechanical coupling. We note that the dispersion is more

pronounced when n=
ffiffiffi
a

p
is not small, or when the wavelength 2pn is not large when compared to the

microscopic characteristic length
ffiffiffi
a

p
. When n=

ffiffiffi
a

p
just begins to show its effect, Eq. (36) can be approxi-

mated as
x2 ffi �c
q

n2 1

�
� k2

1þ k2
e0
e

an2

�
ð37Þ
Eq. (37) shows that given a wave number the electric field gradient lowers the wave frequency. In this sense,

as pointed by Mindlin (1972), the first strain gradient theory is fundamentally flawed because it predicts an

increase of wave frequency which is inconsistent with lattice dynamics. The second strain gradient needs to

be included to correct this inconsistency. As a numerical example we consider polarized ceramics PZT-7A

with the following material constants (Jaffe and Berlincourt, 1965)
q ¼ 7500 kg=m3; c11 ¼ 148; c33 ¼ 131; c12 ¼ 76:2; c13 ¼ 74:2;

c44 ¼ 25:4; c66 ¼ 35:9 GPa; e15 ¼ 9:2; e31 ¼ �2:1; e33 ¼ 9:5 C=m2;

e11 ¼ 460e0; e33 ¼ 235e0; e0 ¼ 8:85
 10�12 F=m:

ð38Þ
For polarized ferroelectric ceramics the grain size, which can be taken as the microscopic characteristic

length
ffiffiffi
a

p
, is at sub-micron range. We plot Eq. (36) in Fig. 6 for different values of

ffiffiffi
a

p
. It can be seen that

larger values of
ffiffiffi
a

p
yields more dispersion, as expected.
8. Conclusion

For anti-plane problems the equations for elastic dielectrics with electric field gradient reduce to two

relatively simple equations which allow a general solution in polar coordinates. In statics, different from the

classical theory of piezoelectricity, for a concentrated source the potential field is not singular. The
capacitance of a thin circular cylindrical ceramic shell is predicted to be smaller than the classical theory.

The strain and electric fields differ from the classical results mainly near the surfaces of the shell. For
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dynamic problems the electric field gradient causes plane waves to become dispersive through electrome-

chanical coupling. The dispersion is more pronounced when the waves are short in the sense that the

wavelength approaches a microscopic characteristic length. The electric field gradient is expected to have

similar effects in other small scale problems or problems with singularities.
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