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Abstract

The equations of elastic dielectrics with electric field gradient effects are specialized to the case of anti-plane motions
of polarized ceramics. A general solution is obtained in polar coordinates. Analytical solutions to the static problems of
the potential field of a line source, the capacitance of a circular cylindrical ceramic shell, and the dynamic problem of
the dispersion relation of plane waves are obtained to examine the electric field gradient effect. Special attention is paid
to the case when the shell is thin and the waves are short.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For elastic dielectrics there are two formulations. One uses the electric polarization vector as the
independent electric constitutive variable (Toupin, 1956). The other uses the electric field vector (Tiersten,
1971). Mindlin (1968) extended the polarization formulation by allowing the stored energy density to
depend on the polarization gradient, in addition to the polarization vector and the strain tensor. Mindlin’s
theory has received a lot of attention, e.g., Askar et al. (1970); Chowdhury and Glockner (1976, 1977);
Chowdhury et al. (1979); Schwartz (1969), and Collet (1982). As is well known, gradient theories can
describe size effects which are important in small scale problems. They also have important consequences in
problems with singularities like concentrated sources or defects. Gradient theories are closer to microscopic
theories like lattice dynamics than classical continuum theories (Mindlin, 1969). They are still applicable
when the characteristic length of a problem is so small that classical continuum theories begin to fail. One
of the successful applications of Mindlin’s polarization gradient theory is the capacitance of a thin dielectric
film (Mindlin, 1969) where a size effect was observed in experiments and the classical theory of dielectrics
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cannot describe it. The development of new technology results in thinner and thinner dielectric films and
other small electronic devices. The study of these small devices presents new problems that old theories
cannot describe, and the gradient effects of electric variables often play an important role in these problems.
For dielectrics it is known that the electric field gradient can also be used as constitutive variables (Landau
and Lifshitz, 1984). The resulting theory is called dielectrics with spatial dispersion, and is equivalent to the
theory of dielectrics with electric quadrupoles (Kafadar, 1971) because electric quadrupole is the thermo-
dynamic conjugate of the electric field gradient. Theories for elastic dielectrics with electric quadrupoles
were also developed (Demiray and Eringen, 1973; Maugin, 1979, 1980; Eringen and Maugin, 1990), which
provide results similar to Mindlin’s polarization gradient theory in problems with singularities or scale
effects. Various gradient theories can be considered as theories for weak nonlocal effects (Maugin, 1979).

In this paper we study the effect of electric field gradient in anti-plane problems of polarized ceramics.
The three-dimensional equations for elastic dielectrics with electric field gradient are summarized in Section
2. Equations for the two-dimensional anti-plane case are given in Section 3. A general solution in polar
coordinates is obtained in Section 4. Static problems of the potential field of a line source and the
capacitance of a circular cylindrical ceramic shell are analyzed in Sections 5 and 6, respectively. Section 7 is
on the dynamic problem of propagation and dispersion of plane waves. Finally, some conclusions are
drawn in Section 8.

2. Elastic dielectrics with electric field gradient

We summarize the theory of elastic dielectrics with electric field gradient below. Consider the following
functional over a volume ¥ bounded by a closed surface S with unit exterior normal n (Yang, 1997a)
1 _ - 0
F(u,-, (]’)) = / |:W(Sl:]*,Ei,El“/'> — ESOEiEi _ﬁui + q(f):| dV — / <tiui + d(b + Tfa—f:> dS, (1)
v s
where u; is the mechanical displacement vector, ¢ the electric potential, S;; the strain tensor, ¢ the electric
permittivity of free space, E; the electric field vector, f; the body force, g the body free charge density, and 4
the surface traction vector. d is related to surface free charge. 7 is physically more subtle and mathemat-
ically its presence is variationally consistent. Summation convention for repeated tensor indices and the
convention that a comma followed by an index denotes partial differentiation with respect to the coordinate
associated with the index are used. In Eq. (1)

1
W(SijaEiaELj) = H(SijaEi) - SOVijkEiE/,k - EsoaijklELjEka (2)
where H is the usual electric enthalpy function of piezoelectric materials. For linear materials H can be
written in the following quadratic form (Tiersten, 1969)

H(Sij,Ei) = %CijleijSkl - %SOXUE;E,' — eiukEiSu, (3)
where ¢;; are the elastic constants, e;; the piezoelectric constants, and y;; the electric susceptibility tensor.
7% and oy, are new material constants due to the introduction of the electric field gradient in the energy
density function. y;; has the dimension of length. o;;, has the dimension of (length)?. Physically they may be
related to characteristic lengths of atomic or microstructural interactions of the material. Since E;; = E;;,
a;u has the same structure as c;; as required by crystal symmetry, and y,; has the same structure as e;;.
For W to be negative definite in the case of pure electric phenomena without mechanical fields, we require
wju to be positive definite like y;;.
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With the following constraints
Sy = (wiy +uwi)/2, Ei=—¢, (4)

from the variational functional in Eq. (1), for independent variations of u; and ¢ in V', we have

T}i‘j +ﬁ = 07 (5)
Di,i =dq,
where we have denoted
ow
;= E = ciyurSu — ewjEr,
D; = &oE; + P, = e;E; + eSu — e0(Viy — Vi) Ejk — €0%ijurEr 1)
P, =10, — I;;; = eoyy;E; + €S — &0V — Vi) Ejk — €0%ijurEr 1) 6)
ow
II; = — 3E 1S + oy Ej + €o0ViEjks
ow
I, = - @ = &0Yu;Ex + €00kt E -

J

In Eq. (6) &; = &(dy;x,;). II; and II;; are related to electric dipole and quadrupole densities (Eringen and
Maugin, 1990). The functional in Eq. (1) also implies the following as possible forms of boundary con-
ditions on S:

T}'ﬂ’lj = ;i or 5“,‘ = 07
[0 = @39 + 11,m,(V.59) ) ds =0, )
N
_ 3¢
H,-jnjn,-:ﬂ or 5(5) :0,

where V is the surface gradient operator. One obvious possibility of Eq. (7); is ¢ = 0 on S. Other pos-
sibilities will be dealt with in specific problems. With substitutions from Eq. (6), Eq. (5) can be written as
four equations for u; and ¢

Cijkitt,1j + ewjd 4 + fi = pily,
&

(8)
ety 1i — &P i; + 0%jui P s = 45

where p is mass density. A superimposed dot represents a time derivative. In Eq. (8), to include dynamic

problems, we have added the acceleration term. When o — 0 Egs. (8) reduce to the classical theory of

piezoelectricity.

3. Anti-plane problems of polarized ceramics

For ceramics poled in the x; direction the material tensors in Eq. (8) are the same as those of crystals of 6
mm symmetry and are represented by the following matrices under the compact matrix notation (Tiersten,
1969)
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Ci1 C12 C13 0 0 0 0 0 €31 T

Cl2 C11 C13 0 0 0 0 0 €31 e 0 0

Ci3 C13 C33 0 0 0 0 0 €33 (1)1 e 0 (9)
0 0 0 cu O 0 [ 0 es 0| o 0 ’

0 0 0 0 cu O eis 00 o3

0 0 0 0 0 cg 0 0 O

where ces = (c11 — ¢12)/2, and the superscript T is for matrix transpose. We consider anti-plane motions
with

w =1, =0, uz=u(x,x,t),

¢ = d)(xlax%t)'

The nonvanishing strain and electric field components are

{gj}—Vu, {2}_—%, (11)

where V is the two-dimensional gradient operator. The nontrivial components of T;; and D; are

(10)

5l Vutev
T =cVu+ eV,

4

{gi } =eVu — eV + 6aV(V3e), (12)

D3y = —e(y3 = 115) V¢,

where V? is the two-dimensional Laplacian, ¢ = c44, e = €5, ¢ = &;; and o = ;. The nontrivial ones of Eq.
(8) take the following form

cVu+eVig + f = pii,

13
eViu — eV + epa Vi Vi = g, (13)

where f = f3 Eq. (13) can be partially decoupled into the following one-way coupled system:

eViu+f+ 8—°av2(pu —cNVu —f) = pit +€q,
& €
| (14)
Vi = ;(pi’t —cVu—f).
For static problems Eq. (13) can also be decoupled into

a2 + e0aV V2 = g + Sf,

15
N (15)
Vou= c(eV¢+f).

In Egs. (14) and (15)
c=c(l+k),e=e(1+k*),k* =e*/(ec) (16)

where & is a dimensionless number (the electromechanical coupling factor).
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4. A general solution in polar coordinates

We consider static problems with ¢ = 0 and /' = 0. Let

F=V%), B> =%/en (17)
Eq. (15); becomes
V2F — B’F =0. (18)

In a polar coordinate system defined by x; = rcos 6 and x, = rsin 6, by separation of variables, the general
solution for F periodic in 6 can be found as

F= zoo:(an cosnf + b, sin nb)[c,L,(fr) + d.K,(Br)], (19)
n=0

where a,, b,, ¢, and d, are undetermined constants, and 7, and K, are modified Bessel functions of order n of
the first- and second-kind. Then from Eq. (17), the general solution for ¢ is

¢ = q |:g0 + h() Inr +%Ig(ﬁl’) + Z(;Ko(ﬁr)]

+ Z(a,, cosnf + b, sin nf) [g,,r” + b+

n=1

n dn
1) +ﬁ21<n<ﬂr>], (20)

where g, and 4, are undetermined constants. Once ¢ is known, from Eq. (15), u is given by

d
u = ap |:l() +p0 Inr — ; ;—glo(ﬁr) — S ﬁ—gKo(ﬁl")]
> . n dn
+ (a,cosnd + b, sin nb) [l,,r” St — S %1”(&) - ; ﬁzK,,(ﬂr)] : (21)
n=1

where /, and p, are undetermined constants.

5. Potential field of a line source

We now consider the potential field of a line charge O at the origin. The above general solution is
applicable and it is also simple to integrate the equation directly. We need to solve Eq. (15); with a con-
centrated source term

—eV2 + £0a VA V2 = 05(x1, x,). (22)
Eq. (22) can be rewritten as
(=& + e0a V)V = Q6(x1,x,). (23)

Therefore V2¢ is the fundamental solution of the differential operator in Eq. (23), which is known
(Zauderer, 1983). Hence

v -1 d ( %) 9 k. (24)

7 dr rdr
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Since
d d
WKo(x) = — - BKi()],  Ki(x) = = [Ko(x)]. (25)
Integrating Eq. (24) twice we obtain
b= llnr+ Kol )], (26)

where the In 7 term is the classical solution. Since

Ko(x) = —Inx, x—0,

N2 (27)
i — ()" o
we have
6L mp=Lm’ o
2me dne gy 28
0 (28)
¢ — — Inr, r— oo.

2me
Therefore for far field ¢ approaches the classical solution. At the origin the exact value of ¢ is not
important because an arbitrary constant in ¢ is immaterial. The important thing is that at the source point
¢ is not singular. This is fundamentally different from the classical solution. When o approaches zero,
B — oo from Egs. (17) and (26) reduces to the classical result. The potential field is plotted in Fig. 1 to show
its qualitative behavior which is as expected. The curve with the smaller value of « or the larger value of f is
closer to the classical solution.

6. Capacitance of a circular cylindrical shell
Experiments show that the capacitance of a thin dielectric plate is smaller than the prediction of the
classical theory. This difference was explained by Mindlin using both lattice dynamics and his polarization

gradient theory (Mindlin, 1969). In this section we show that a similar phenomenon is predicted for a
circular cylindrical shell capacitor of polarized ceramics. Consider a circular cylindrical shell of inner radius

31 Normalized ¢

_— Classical Solution

Fig. 1. Normalized potential field (—2n&¢/Q) of a line source.
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R, and outer radius R, (Fig. 2). The inner and outer surfaces are traction free and are electroded, with
electrodes shown by the thick lines in the figure. A voltage V is applied across the thickness. We list the
solution from the classical theory of piezoelectricity below for comparison

vV e |14 vV 1 2me

=——1 = 1 T;'z:()v Dr:_i—_, =1 n 29
h'le/Rl nr, “ nr, SlnRz/Rl r 0 lnRz/Rl ( )

d) _ElnRz/Rl

where we have denoted y,; = y, and introduced 7 such that € = g (1 + ). 7 is the effective electric sus-
ceptibility including the effect of piezoelectric coupling and is determined by (1 +7) = (1 + )(1 + £?). Cy is
the capacitance per unit length of the shell.

We now seek the gradient solution. Since the problem is axi-symmetric, terms corresponding to n = 0 in
the general solution are sufficient. From Egs. (20) and (21) we have

b= g0+ holnr+ B8 + %Kowr),

ec e d (30)
0 0
u=1Iy+pylnr— - Elo(ﬂ}") - FKO(/?;’),
where we have dropped ay which is immaterial. Corresponding to Eq. (30) we have
e e
Srz =Uu, :1? - 30011 (ﬁl") =+ JdOKl (ﬁr)a
hy 1 1
Er = _d),r = ——— —Co]l(ﬁr) +—d0K1(ﬁr),
ro B i
. (31)
T,. = (cpo + eho) o
1
Dr = (epo - 81’!0) ;

We note that the strain and electric fields differ from the classical theory by terms of modified Bessel
functions. For boundary conditions we have

X2

Ry

b xl

¢=0

Fig. 2. A circular cylindrical ceramic shell as a capacitor.
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T-(R2) = (cpo + eho)i2 =0,
(Re) = (k1) = hoIn o/ By + 5 (BR) — o BRs)) + 5 Ko Re) = Ko( R = V.
0 h 1 1 1
E (Rz) % RZ + ﬁCOIl (ﬁRQ) — EdOKl (ﬂRz) R2 lnRI:/Rl
0| ke 1 1 L
_Er(Rl) = E N Rl ﬁCOIl (ﬂR ) _BdOKl (ﬁR ) Rl lnRz/Rl (32)

Corresponding to Eq. (7),,, the first two boundary conditions on traction and voltage in Eq. (32),, are
formally classical except the terms of the modified Bessel functions. The surface gradient term in Eq. (7),
disappears due to the symmetry in this problem. Since the order of the equation in Eq. (15); is higher than
the Laplace equation in the classical theory, new boundary conditions are needed. According to Eq. (7)s,
the additional boundary conditions may be either on 9¢/0n or II;;n;n;. Motivated by Mindlin (1969), what
we have in Eq. (32);4 is on 0¢/0n, where, following (Mindlin, 1969), we have introduced a parameter 2 and
when 2 =1 the right hand sides of Eq. (32);4 represent the values of —E,(R;) and —E,(R;) of the classical
solution. Mindlin concluded based on physical reasoning (Mindlin, 1969) that the boundary normal values
of P in a plate capacitor from his polarization gradient theory should be smaller than the values from the
classical theory. Since we are using electric field gradient, Mindlin’s argument should translate into that the
boundary normal values of E be larger than the classical values. Therefore we require that 4 > 1. This is
also consistent with the results on the electric field from a nonlocal analysis of a thin plate capacitor (Yang,
1997b). According to (Mindlin, 1969), 1 depends on the physical nature of the electrode-dielectric interface.
We note that 7,.(R;) = 0 does not provide an independent boundary condition because Eq. (32); implies
that 7,, = 0 everywhere. Eq. (32) represents four equations for %y, py, ¢y and dy. They are solved on a
computer. The capacitance of the shell per unit length is determined by

C = —27R,D,(Ry) [V = —2n(epo — ehy)/ V. (33)

Normalized capacitance C/Cy versus (R, — Ry)/+/a is plotted in Fig. 3. It is seen that when (R, — Ry)/+/a is
large the gradient and classical solutions agree, but when (R, — R;)/+/o is small the gradient solution is
smaller. This was observed experimentally for plate capacitors (Mindlin, 1969) and it is natural to expect
the same for a shell capacitor.

Electric field distribution along the shell thickness is shown in Fig. 4. Except near the surfaces of the
shell, the gradient and the classical solutions show the same electric field. Near the surfaces the gradient

127 ¢,
1 -+

08T

>
1

=

[&)]

06T
04T

02T (ReR)or

0 t t t i
0 1 2 3 4 5

Fig. 3. Normalized capacitance versus shell thickness in a circular cylindrical shell (R; = 104/).
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0 : : : : {
) 0.2 0.4 0.6 038 1

011 (r-R)/(Re-Ry)

024 Classical Solutioﬁ\

-0.3

-0.44 Gradient Solution ————

05+ E(Vim)

Fig. 4. Electric field distribution along the shell thickness in a circular cylindrical shell (R; = 10y/x, Ry = 13y/a, 2 = 1.5, ¥V = 107° V).

0.00E+00 } } } }
0.2 0.4 0.6 0.8 1

-3.00E-11 (r-R)I(Ry-Ry)

-6.00E-11 1

Classical Solution
-9.00E-114 T

-1.20E-10 1

-1.50E-10 Gradient Solution

-1.80E-10+ g,

Fig. 5. Strain field distribution along the shell thickness in a circular cylindrical shell (R; = 10y/a, R, = /&, 2= 1.5, V =107 V).

solution predicts larger electric fields. This type of boundary behavior is typical for a gradient theory and is
also seen in the polarization gradient solution for a plate in (Mindlin, 1969), and the nonlocal solution in
(Yang, 1997b) where there are no additional boundary conditions and the parameter A is not needed.

The strain field distribution along the shell thickness is shown in Fig. 5, which is very similar to the
electric field. The localized electromechanical fields near the shell surfaces may have implications on the
strength of the shell.

Numerical results also show that

DrGradient

DClassical = 09925’ (34)

which supports our reasoning that a smaller P in the polarization gradient theory translates into a larger E
in the electric field gradient theory.

7. Propagation of plane waves

Consider the propagation of the following plane wave
U = eilen—on, (35)

where £ is wave number and o is frequency. Substitution of Eq. (35) into the homogeneous form of Eq.
(14), (f =0, g = 0) yields the following dispersion relation
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20 T
Vo, =1x10°m
>
I
C 10+
3
Vo, =3x10°m
Vo=2x10%m .
&(m™)
0 } } }
0.0E+00 2.0E+06 4.0E+06 6.0E+06
Fig. 6. Dispersion curves of plane waves.
c k?

Different from the plane waves in linear piezoelectricity, Eq. (30) shows that the waves are dispersive, and
the dispersion is caused by electric field gradient through electromechanical coupling. The dispersion dis-
appears when k = 0, i.e., when there is no electromechanical coupling. We note that the dispersion is more
pronounced when £/4/a is not small, or when the wavelength 2z¢ is not large when compared to the
microscopic characteristic length \/o. When £/4/a just begins to show its effect, Eq. (36) can be approxi-
mated as

1%

= 2
262 k* & .

28— 2 37
@ pﬁ { Tk e } (37)
Eq. (37) shows that given a wave number the electric field gradient lowers the wave frequency. In this sense,
as pointed by Mindlin (1972), the first strain gradient theory is fundamentally flawed because it predicts an
increase of wave frequency which is inconsistent with lattice dynamics. The second strain gradient needs to
be included to correct this inconsistency. As a numerical example we consider polarized ceramics PZT-7A

with the following material constants (Jaffe and Berlincourt, 1965)
p=7500 kg/m*, ¢ =148, ¢33 =131, ¢, =762, cp3 =742,
cu =254, ce6=359GPa, e5=92, ey =-21, e;3=295C/m’ (38)
e1] = 460gy, e33 = 2358, & = 8.85 x 107> F/m.

For polarized ferroelectric ceramics the grain size, which can be taken as the microscopic characteristic

length \/a, is at sub-micron range. We plot Eq. (36) in Fig. 6 for different values of v/a. It can be seen that
larger values of /a yields more dispersion, as expected.

8. Conclusion

For anti-plane problems the equations for elastic dielectrics with electric field gradient reduce to two
relatively simple equations which allow a general solution in polar coordinates. In statics, different from the
classical theory of piezoelectricity, for a concentrated source the potential field is not singular. The
capacitance of a thin circular cylindrical ceramic shell is predicted to be smaller than the classical theory.
The strain and electric fields differ from the classical results mainly near the surfaces of the shell. For
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dynamic problems the electric field gradient causes plane waves to become dispersive through electrome-
chanical coupling. The dispersion is more pronounced when the waves are short in the sense that the
wavelength approaches a microscopic characteristic length. The electric field gradient is expected to have
similar effects in other small scale problems or problems with singularities.
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